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ABSTRACT

Parameter plane techniques of analysis and design are applied to

variable parameter linear electric networks. Parameter plane theory is

extended in several areas.

A theorem permits the constant zeta and omega loci to be obtained in

non-parametric form.

The class of network functions to which parameter plane techniques

may be applied is broadened by permitting parameters to appear non-

linearly in the polynomial coefficients.

Algebraic design methods are presented which permit the solution for

parameter values which will simultaneously meet many different types of

specifications.

Pole-zero sensitivity formulas are derived from the non-parametric

equations of the constant zeta and omega loci.

Equations for curves of constant bandwidth and Q are derived which

permit these characteristics to be displayed on the parameter plane.

Examples are presented which demonstrate the application of these

techniques to several common networks.
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1. Introduction

Linear active and passive electric networks frequently have one or

more variable parameters. In certain instances network elements are in-

tentionally varied so as to modify the characteristics of the network.

In other instances the network has no intentionally variable parameters,

but due to component tolerances, aging, heating etc., variations do oc-

cur. If it is assumed that these variations occur sufficiently slowly

so that the network may be considered time invariant, and if it is de-

sired to predict or control the effects of such variations on the charac-

teristics of the network, then the methods to be described can be applied,

Parameter plane techniques were first introduced as a technique for

analysis and synthesis of feedback control systems. They were used to

investigate the effects upon the roots of the control system character-

istic equation as two parameters within the system were varied.

In the early 1950' s Mitrovic (1) considered system parameter varia-

tions which directly affected two of the coefficients of the system

characteristic equation. For example:

n
, n-1 . . 3 . 2as + a , s

n n-1
+ ...+ a

3
s + a

2
s + B^ + B

Q
= (1M)

where: a. are constant and real
l

Bn and B are variable and real

Mitrovic' s original work resulted in curves of constant zeta, omega, and

sigma which he drew upon the B -B. plane and which specified the roots of

Equation (1-1) for any choice of B. and B..

.

In 1964, Siljak (2) extended Mitrovic' s work to include cases where

variable system parameters, say <X and 8 appeared linearly in one or

1





more of the coefficients of the characteristic equation. Specifically

Siljak investigated the case where:

n

L =Q

a
i
s
i

= (1-2)

where:

and:

a. = b.°< + c. (i + d.
i 1 i l l

b., I., d. are constant and real
l l l

ex , (3 are variable and real

Siljak, like Mitrovic, obtained curves which were plotted upon the o<-(3

plane and which specified the roots of Equation (1-2) for any choice of <*>

and (3 . It was Siljak who first referred to such graphs as "parameter

planes 1 '.

The parameter plane provides information about the roots of the

characteristic equation similar to that provided by root loci, but unlike

root locus techniques, which investigate the effects of varying one system

parameter, parameter plane techniques are inherently best suited for in-

vestigating the effects of varying two system parameters.





2. Basic Parameter Plane Techniques

Parameter Plane techniques evolved from a study of the characteristic

equation of control systems and of how the roots of such equations were

affected as two parameters of the control system were simultaneously varied,

More basically however, the parameter plane is a method for investigating

the roots of variable coefficient polynomials, and hence is applicable in

a much wider sphere than that of control systems alone. This chapter will

review the parameter plane techniques as presented by Siljak (2) and will

point out some of the reasons that have limited the scope of applicability

of these techniques. Subsequent chapters will present new work which

overcomes some of these limitations.

Let us consider a polynomial equation:

n .

F(s) = J2 V = ° (2 ' 1}

k o

where the coefficients a (k = 0, 1, . . . ,n) are real and s is the

complex frequency variable s = <T + j<*> - fu)+j6)Jl -£z

If one forms powers of s it can be shown (2) that the following relation

holds:

s
k

= 0J
k

( T <-JT ) + J J l-}
2

U
k
<-? )) (2-2)

where:

V 1 )
=

(
- i)kv } }

y-7 >
= <- i)k+1 V ?>

(2-3)

The U, and T are Chebyshev functions of the first and second kind
K. K

respectively and are given by the following recursion relations (2):





(2-4)

\ + 1< V >
- 2

? V ? > +
°k.i< P - •

where:

i (f )- v v? > ? > V? >
= V? >

= l

Tables of these Chebyshev functions are included in Appendix III.

Substituting Equation (2-2) into Equation (2-1) and setting the real

and imaginary parts of the resulting equation equal to zero independently we

obtain:

1 \ ^\ ( -f >
=

< 2
" 6 >

K=0

Employing Equations (2-3) and (2-4) we obtain these expressions in

terms of the tabulated Chebyshev functions:

n

Z<-1>\ u\-i<?>-° < 2 - 7 >

k=o

K-O

(-l)
k
a,6)

k
U, (^ ) = (2-8)

Let us consider, as Siljak did, that the coefficients a, of Equation

(2-1) are linear functions of the variable parameters o< and (2> as follows:

•k-V + ck^ + d
k

(2 -9)

where:

b , c , d (k = 0, 1, . . .
,n) are constant and real

c< , ft are variable and real





Substituting Equation (2-9) into Equations (2-7) and (2-8) we obtain:

B
x
* + C

x p
= - Dj (2-10)

:2P
= " D

2" P

where:

B
i

=

K=0 K=0

Equations (2-10) are two linear equations in the variables °( and ^ .

Solving these equations we obtain:

« =
C
1
D2-C

2
D
1 (5 =

B
2
DrB

l
D
2 (2-12)

B
1
C
2
-B

2
C
1

B
1
C 2"B

2
C
1

Equations (2-12) give o< and (1 in terms of f and <0 . Thus if we

fix X= X _ and vary k) over the range < k)< °° we will ob-

tain a curve in the ol - fS plane which specifies the relation between o<

and (S necessary to cause a pair of complex roots of Equation (2-1) to

have a damping ratio X equal to X . Curves resulting from fixed

values of X are referred to as constant zeta loci. If we fix 1^- U)

and vary 7 over the range -1 % X K. |1 we will obtain another

curve in the o( -
(3 plane which specifies the relation between o( and /3

necessary to cause a pair of complex roots of Equation (2-1) to have an

undamped natural frequency k) = u) _. Curves drawn for fixed values of

(*) are referred to as constant omega curves.





If we substitute s Q~ in Equation (2-1), where sigma refers to

values of s along the real axis in the s-plane, then we obtain:

n

Y a
k
CT
k

= (2-13)

If we now substitute for a the linear relation (2-9) we obtain:

n r? y

<*Z r k
+ pY,^** + z^*7

"""
(2 " 14)

K-0 K-0 K-0

For fixed values of sigma^Equation (2-13) represents a straight line in

the o( - B plane. This straight line specifies the relation between <*k

and A necessary for Equation (2-1) to have a real root at s = (T . Such

lines drawn upon the o< - A plane are referred to as constant sigma loci.

If the reader is interested in the mapping which occurs between the

s-plane and the parameter plane or in the properties of this mapping then

the author refers him to reference (2) where this is discussed in detail.

Example I :

Let us consider that we have constructed a parameter plane for some

third order polynomial and that this appears as shown in Figure 1.

Let us consider that parameter values oC, and fl are chosen to be o<

and (3 n
respectively, and that at these coordinates on the parameter

plane it happens that the 0"*
, , X and 4)- loci intersect. We may

thus assert that for this choice of parameter values the polynomial has

the roots:

. = or,

• - - f 1
*)

2
+ j^a-?, 2)*

Let us now presume that we wish to change the damping ratio to >T n ,





Fig. 1. Example of a Parameter for some 3rd Order Polynomial

but wish to leave the undamped natural frequency unchanged at &) _.

We therefore find the intersection of the % . and U) ~ loci. In this

example this occurs at o( = o( , , (3 = /3 . Adjusting the para-

meters ©< and (S to these values will guarantee complex roots at s =

2 3-

- ? 1
CO

9 + J &) 2 (
1_ ? n^'

2
*

The real root which was at G " 0* -

has moved to a new location between 0*
9
and 0"* ^.

Thus we see that the parameterAis a general tool of both analysis

and synthesis in two parameter systems.





3. Scope of this Work

This section outlines the general content of this manuscript and

introduces new work which overcomes some of the limitations of parameter

plane theory which have heretofore prevented its application to electric

networks.

General Content

In this work the author investigates the application of parameter

plane techniques to variable parameter electric networks. The objective

of this work is to provide means of analysis which will show how the net-

work characteristics change as the parameters are varied and to provide

means of design which will permit values of the adjustable parameters to

be chosen so as to cause the network to have desired characteristics. To

this end both graphical and analytic techniques are presented. The net-

work characteristics which can either be determined or controlled are

pole and zero locations, frequency response, Q and root sensitivity.

Section 4 through 8 develope the mathematical theory which related

the network characteristics to the variable parameters. The mathematical

theory presented in these sections forms the basis for both the graphical

and analytic techniques.

Sections 9, 10, and 11 contain examples of graphical analysis and de-

sign of selected networks which have historically been of considerable

interest. These examples provide not only an illustration of the poten-

tial of the parameter plane techniques, but also provide normalized results

which will aid designers in employing these networks.

Section 12 considers several other networks of general interest.

These networks are considered in enough detail to show the applicability

8





of parameter plane techniques to their analysis and design.

Section 13 presents an algebraic method of design which employs the

parameter plane equations developed in earlier sections. These algebraic

methods of design can be applied to any problem which may be graphically

designed and additionally to the much larger class of problem which have

more than two parameters. There is theoretically no limitation on the

number of parameters which may be simultaneously considered when using

these algebraic techniques of design.

Section 14 concludes the manuscript with the author's comments on

the work and with his recommendations for additional work in the area of

network analysis and design by parameter plane techniques.

Limitations of Earlier Parameter Plane Theory and Introduction to New Work

Parameter plane theory as it has heretofore existed has several

limitations which have restricted its application to electric network

analysis and design. The remainder of this section discusses these limita-

tions and introduces new work aimed at overcoming them.

Form of the Coefficients

Consider the restrictions which have been placed on the polynomial

coefficients - namely that the variable parameters must appear linearly in

the coefficients:

\ = \* + c
k P + \

This restriction was not too severe when parameter plane techniques were

applied primarily to feedback control systems since many useful systems

have characteristic equation coefficients of this form. Electric networks

on the other hand, seldom have coefficients of this type. Consider for





example the Parallel-T network shown in Figure 2:

E r

Fig. 2. Symmetrical Parallel-Tee Network with Variable Elements

This network has the transfer function:

o<(3p
3
+ 2 (3 p

2
+ 2|9p + 1

E.(p) c<3 p
3
+ (2 /3 + 2 <*/3 + ©< ) p

2
+ (2 /9 + <X + 2) + 1

(3-2)

where: p RCs

Observe that Equation (3-2) contains terms o(|3 as well as the linear

terms permitted by Equation (3-1). Thus we are unable at this point, due

to the linear requirements placed on the coefficients, to determine by

parameter plane techniques how the singularities of (3-2) are altered as

the parameters o< and (3 are varied. New work to be presented in

Section 4 will overcome this difficulty.

Constant Zeta and Omega Loci

As derived by Siljak (2), the constant zeta and omega loci are

presented in parametric form as functions of the independent variables

omega and zeta respectively. This may be seen in Equation (2-12) where

10





the constant zeta loci are obtained by fixing zeta at selected values and

generating the loci by varying the independent variable omega over the

range to infinity. Similarily, the constant omega loci are obtained

by fixing omega at selected values and then varying zeta as an independent

variable over the range -1 to +1.

Clearly it is desirable to obtain the equations of these loci in non-

parametric form. By achieving this we simplify the plotting of these loci,

and more important we obtain these loci as families of plane algebraic

curves in the ©< - jS plane. This will permit the mathematical procedures

for the investigation of plane algebraic curves to be applied when analyz-

ing the behavior of these loci. This is an important step if procedures

for sketching the constant zeta and omega loci are to be developed. In

Section 5, procedures are presented for reducing these equations to non-

parametric form.

Frequency Response Characteristics

Since frequency response characteristics are often used in specifying

the behavior of an electric network it is essential that any method which

purports to be a general tool for analysis and design of such a network

include procedures for determining and controlling the essential features

of its frequency response. Choe (3) developed formulas for displaying

curves of constant bandwidth upon the Mitrovic plane, but these techniques

were not applicable to the parameter plane. In Section 6 formulas are

developed for displaying curves of constant bandwidth upon the parameter

plane. These formulas are not only applicable to electric networks, but

to any rational system function which can be displayed upon the parameter

plane.

11





Constant Q Loci

Second order network transfer functions can be characterized by their

Q, much in the same way that the characteristic equation of a second order

servomechanism is characterized by its damping ratio. Procedures are

developed in Section 7 for displaying loci of constant Q upon the parameter

plane. These specify the value of Q which results for any choice of network

parameters or alternately specify in what fashion the network parameters

must be changed in order to obtain some desired value of Q.

Root Sensitivity to Parameter Variations

The sensitivity of the roots of a polynomial to changes in parameters

contained in its coefficients can be catagorized as macroscopic or microscopic.

Macroscopic sensitivity refers to the sensitivity of the roots to large changes

in the parameters. Microscopic sensitivity refers to infinitesmal changes in

the parameters. The constant zeta and omega loci drawn upon the parameter

plane permit macroscopic sensitivity to be determined by inspection. Micro-

scopic sensitivity may be determined from formulas derived by Kokotovic and

Siljak (5) from the parameter plane equations or may be computed directly

from the non-parametric equations of the constant zeta and omega loci which

are developed in Section 5. Section 8 describes how both macroscopic and

microscopic root sensitivity to parameter variations may be determined.

Examples of Parameter Plane Techniques Applied to Networks

Sections 9-11 contain detailed examples of parameter plane techniques

applied to specific networks. These examples were carefully chosen in

order to both fully demonstrate the current state of parameter plane tech-

niques, and at the same time to produce results useful to persons desiring

to employ these networks. The results which are presented are general and

12





are presented in normalized form.

Section 12 contains examples of several networks with variable para-

meters which were studied only so far as to show the applicability of

parameter plane techniques to their analysis and design.

13





4. Parameter Plane Equations for Coefficients of the Form:

\ - V + c
k <3

+ d
k ^ + £

k

In this section equations will be obtained which will permit para-

meter planes to be constructed for polynomials whose coefficients are of

the form:

S-V* +Ck£ *\"fi +f
k (^

where: b. , c, , d, are constant and real
k k k

c< , |3 are variable and real

Consider the polynomial equation:

n

F(s) = a
k
s
k

= (4-2)

K-O

Let the coefficients a, be of the form specified by Equation (4-1).

Let:

s
k

= <0
k
[T
k
(-£ ) ± J s/l- f

2

V" P 1 (4 " 3)

where: T, and U, are Chebyshev functions discussed in Section 2.

Substituting (4-3) into (4-2) we obtain:

n .
,

n

F ( s) - X ak^
k
v-f>± w 1-?

2 2v°k

v-?>
(4-4)

Equating the real and imaginary parts of Equation (4-4) to zero independent-

ly we obtain:

£ «k «
k
V-f )-0 (4-5)

K=o

\ ^ k
U
k ( "? }

= ° (4 ' 6)

K-O

14





but from Equations (2-3) and (2-4):

T
k
(-5) = <-l)

k
T
k(?)

k+1

uu-i<-?> = <- 1 >
k

Vi<? >

Substituting Equations (4-7) into Equations (4-5) and (4-6) we obtain:

n

(4-7)

y (-d\ «>
k v f ) - o

J (-i>\<o k
u
k(r> = o

(4-8)

(4-9)

Substituting for the coefficients a in Equations (4-8) and (4-9) the

form specified by (4-1) we obtain:

1 n

°<Z (
" 1>kb

k
uV 7 >

+
i
3 J. (

"1)kc
k "V f > +

«(9 J (
- i)kd

k »Vf >+ J (
- 1)kf

k
BV f > " °

CK^ (-1)\ «>\{f ) + ^ (-l)
k
c
k
^k

U
k(? ) +

^^r (
" i)kd

k
aj\ ( f > + y (_i)kf

k *°\ ( ? > - °

(4-10)

fc*0

which may be written:

B
1
©< + C- |3 + D^g + F =0

B
2
o< + C

2
(3 + D

2
«(|6 + F

2
=

(4-11)

(4-12)

(4-13)

where:

B
i
= (-i)\ « \( T )

C, = J (-l)
k
c
k
W\( ^ )

B
2 =

C
2
=

2 <-l)\^\(?-)

AT=0

K=d)

<=0

(-l)
k
c 4>\<f >

(4-14)

15



-s



d
i

= T <-»\ »\< ? >
D
2

= Z (
" 1)kd

k wV*

>

K=0 K*0

Eliminating o( from Equations (4-12) and (4-13) we obtain:

F
l
+C lfl

B
l
+ °1 P

Fo + c
9 132 2 - o<

B
2
+ D

2 £
(4-15)

Which may be written:

Acd P
2
+ <

A

FD + A CB ) 3 + A*'- ° <
4 " 16 >

Where:

CD

C
l

C
2

D
l

D
2

A FD

F F
1 2

D
l

D
2

, etc

Equation (4-16) has the solutions:

. -(A FD + A CB > ± J (A FD + A CB )

2
- *A CDACD*-*FD

2A CD
\s

(4-17)

Let us define:

4 " <

A

FD + A CB )
2

- *A CDAFD

This permits us to write Equation (4-17) as:

(4-18)

*-A*— I -<A FD + A CB)±R|B l

CD
(4-19)

Proceeding in a similar fashion we may eliminate & from Equations (4-12)

and (4-13) to obtain:

c
l
+ Dl*

F
2
+

C n + D
l± - (3

(4-20)

2°<

As before, we may rewrite this as

' + <AM + A™><* + AA ED°< FD ;

16

FC
= (4-21)





Solving Equation (4-21) for we obtain:

°< 2S^T [•(Ara +A i.)±l, ! (4-22)

Where we have defined:

.2
r; - (ABC +A F/ - *A BD

A
FC

(4-23)

i

2
=

- 2

From Equation (4-23) we write:

We will now show that R,v = R-g

R^» (B^-B
2
C
X
+ D

2
F
1

- D
1
F
2
)

2
- 4(F

1
C
2

- F^XB^ - D^) (4-24)

Expanding Equation (4-24) we obtain:

R
« " B

1
C
2
+ B

2
C
l
+ D

2
F
1
+ D

1
F
2
+ 4 B

1
C
1
D
2
F
2
+ 4 B

2
C
2
D
1
F
1 "

2 B
1
B
2
C
1
C
2

"

2 B^D^ - 2 BlC 2
DlF2 - 2 VlVl - 2 B^F, -

2 D
1VlF

2
(4 " 25)

2
Expanding Equation (4-18) for R* we obtain the same expression as in

the right hand side of Equation (4-25). Thus:

R
2

^ = R
2
^ ^ R

2
(4-26)

Thus we may state from Equations (4-19) and (4-22):

* = 2^7 [-<A FD +ABC > ±« (4-27)

fi ' 2^ I-<

A

FD + A CB ) ± 11 (4-28)

Noting that A Qr.

= - A PD we may rewrite Equations (4-27) and (4-28)

as:

" = ^ ' "<A FD
+ A B^ + (

- 1)Ur1
'

k " (l <4 " 29)
^^ BD

P~~ 2^ [
-
(A FD

+ A BC ) + (-D
m
R] --£ (4-30)

17





Equations (4-29) and (4-30) define four possible solution pairs depending

on the values of k and m.

Let us now determine which of these possible solutions are actually

solutions to Equations (4-12) and (4-13). Multiplying Equation (4-12) by

D« and Equation (4-13) by -D. and adding we obtain:

AbD°< + ACD I
9 + AfD - (4-31)

Equations (4-31) must be satisfied by any of the pairs (4-30) which are to

be solutions to Equations (4-12) and (4-13). Substituting Equations (4-29)

and (4-30) into Equation (4-31) we obtain:

- AFP - ABC + (-l)
k
R - AFP + AbC + (-l)

m
R +A pn =

2 2 2 2 2 2

(4-32)

Which after simplification becomes:

(-l)
k

+ (-l)
m

= (4-33)

In order for (4-33) to be satisfied it is necessary that

k t m (4-34)

Thus we may rewrite Equations (4-29) and (4-30) as:

°<k- 2X~n [
"(A FD

+ A BC>
+ <- 1 >

kRl
<4 "35 >

ZABD

fi k
= ^ [

"<Aro + ABC> + (
" 1)k+1R1 (4 ' 36)

Where k = and k = 1 generate the two solution pairs of Equations (4-12)

and (4-13).

Equations (4-35) and (4-36) may be used to program a digital computer

to generate the constant zeta and omega loci. The basic steps to be pro-

grammed are:

18





Constant Zeta Loci

1. Fix 7 m j . • This makes Equations (4-14) functions only of

the independent variable omega.

2. Increment omega and for each value of omega compute the solu-

tion pairs ( o( , 6 v )l
k = 0, 1 using Equations (4-35) and (4-36).

3. Connect all solutions ( o( , (3(C) in the order of increasing

omega. This generates one branch of the constant zeta locus for 6 - T .

4. Connect all solutions ( ^ . , (Q ) in the order of increasing

omega. This generates the other branch of the constant zeta locus for

?- fr
5. Repeat steps 1-4 for ? X . , Z = X .,„, etc. until as

many constant zeta loci are obtained as desired.

Constant Omega Loci

1. Fix Cd cd I
• Thus makes Equations (4-14) functions only of

the independent variable zeta.

2. Increment zeta and for each value of zeta compute the solution

pairs ( &( , |Q ,); k = 0, 1 using Equations (4-35) and (4-36).

3. Connect all solutions ( o^ , /^ ) in the order of increasing

zeta. This generates one branch of the constant omega locus for *) — iQ .,

4. Connect all solutions ( o(
, ft ) in the order of increasing

zeta. This generates the other branch of the constant omega locus for

U) = U) y

5. Repeat steps 1-4 above for 10= lO • . > ^ - U) ,, 9 , etc. until

as many constant omega loci are obtained as desired.
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5. Non- Parametric Equations for the Constant Zeta and Omega Loci.

In this section procedures are presented which show how the equations

of the constant zeta and omega loci, regardless of the form of the co-

efficients a , may be reduced to non-parametric form.

As developed in Section 4, the parameter plane equations for co-

efficients a, = b o( +ci,(S + d^ °f/8 + fi, take the form:

<* =A( {,4) (51)

/S =B(
f ,(0)

The constant zeta and omega loci are obtained from these equations

by fixing one of the variables, zeta or omega, and considering the other

variable as independent. Varying this independent variable over the range

of interest generates the desired locus. Coir objective in this section

is to obtain the equations of the constant zeta or omega loci from (5-1)

by eliminating omega or zeta, respectively. Achieving this will produce

the non-parametric equations of the desired loci:

Z( * , fS , ? ) - (5-2)

W( * , ft , Od ) = (5-3)

Two theorems, basic to this development, are proved in Appendices I

and II. These are:

Theorem I

The Chebyshev functions U, ( f ) obey the following relationship:

V ?> Vi<P - ui-i<?> vp -w?> (5 "4)

for all integers i and j.
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Theorem II

If:

<-»
k
«k "\-i<P °

and if:

j (-1)\ 6>\( f ) -

Then:

(-l)
k
a
k W

k
U
k ..( f ) = (5-5)

K=0
for all integers k and j

.

Equations of the Constant Zeta Loci

Using Theorem II for the cases j = 0, j = n we obtain:

f(0) ) = V (-1)\ w\(f ) (5-6)

g( «0 ) = V (-l)
k
a
k a)\.n( JT ) - (5-7)

KzO

Equations (5-6) and (5-7) can be considered to be polynomial equations of

order n in (0 . We wish to eliminate u) from these equations in order to

obtain Z(a, , ^f ) 0, which is the non-parametric representation of the

constant zeta loci. This may be accomplished by employing Sylvester's

Dialytic Method of Elimination (6) . The basic steps are shown below for

two polynomial equations of differing order in 60 , from which (0 is

to be eliminated.

Given the polynomial equations:

f( a) ) = f co
m

+ f , a)*"
1

+ ... + f
ft
- o (5-8)

m m-l U

g( U) ) - gn
tO

n
+ g^o/1" 1

+ ... + gQ
= (5-9)

The quantity (j) may be eliminated from Equations (5-8) and (5-9) by the
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following sequence of operations:

1. Multiply (5-8) by <O
n "

, (*)

n
, ..., 1 in turn.

-I m 9
2. Multiply (5-9) by (O , LO , . . .

, 1 in turn.

3. Form the determinant of the coefficient matrix of the

resulting set of (n-fm) equations which are linear and

u „u / , \ „ • .. • „ m+n-1 m+n-2
homogeneous in the (n-!-m) quantities Ld , £J »

..., a) , l.

4. This determinant, when forced equal to zero, establishes the

relation among the f. and g necessary if Equations (5-8)

and (5-9) are to have common roots.

The resulting determinant has the form:

Z<W -

"a

m

.

5n *

S

i.

m

n

2x0
2

x
l

xf«

f
2 ^ f

Q

s2 s1 s o .

S2 S]_ 6q

fm

g
n

. .

.'
.

. .

. . •

J* .p rf»

x 2 x
l -0

. .

. .

• S2 Si s

(5-10)

In the case of Equations (5-6) and (5-7), the constant zeta loci can

be obtained from Equation (5 -10) by making the following substitutions:

h = C
-1)ka

k
Uk-n<f >

(5-11)

(5-12)
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The following example will demonstrate the technique:

Example 2

Consider a£ain the symmetrical parallel-tec network shown in Fi2uro

2, Section 3. For the zeros of the transfer of this network, Equations

(5-6) and (5-7) become:

$
o<pc^3u

3
( J) + 2(3<0

2
u
2
( f ) - 2|Bu ; p • u

Q
( £ ) (5-13)

-0^3 <o
3
u ( f > + 2/s «Vi< ? ) - 2 ^u_

2 ( ? ) + t

j_
3

( y > - o < 5
- 14 >

2
^

Multiplying these equations by U) , 40 > an^ 1 anc^ forming the determinant

Z( °( > /S , 7 ) , we obtain:

Z<<<,/3,£) =

~<pU
3

i-2(bU
2

-ZpJj; rU
(

-^U
3

t2^>U2
-2pj

x
tUq

-<^U
3

m2p
2

-2^

2&Ur -1
-2(*U-2

- * TT

-3

-^U +2PU-1 -2
f
U_

2
+U_

3

-^UQ t2^
i

-2^U_
2

o

tu,

-

-3

(5-15)

Substituting the appropriate functions of zeta for the U. in Equation (5-15)
K

and expanding, we obtain the equation for the constant zeta loci:

-0Tj8
3
(4^

2
-l)

3
[(-32«r^

2
+l6)|5

2
+ (64*?

4
+16«f

2
- 32 f

2
- 8o<)f3 +

(5-16)

2 >»6 2^4 2^2
(-64«X^f + 48»<

Z

f
^ - 12oT£ + c* ) ] =

23





When the two equations (5-8) and (5-9) are of the same order so that

m = n, Sylvester's (2n x 2n) determinant can be reduced to an (n x n) deter-

minant by using Bezout's Method of Elimination (7). To demonstrate Bezout's

method, consider Equations (5-8) and (5-9) with m = n = 3. This pro-

duces the equations:

f( to ) = f
3

CO
2
+ f

2
Cd

2
+ fj U)

1
+ f

Q
=

g( U) ) = g
3

U)
3
+ g

2
co

2
+ %

x
U)

l
+ gQ

-

(5-17)

(5-18)

Then:

f
3
8 - 8

3
f -

(f
3
4) + f

2
)g - (g3

tO + g
2
)f =

<f
3

CO
2
+ f

3
CO + f

x
)g - (g

3
U)

2
+ g

2
(0 + gx

)f =

can be written in matrix form:

(f
3
g
2
)

(f
3«x)

<£
3
8 )

(f
3gl )

((£
3g ) + (f

2
gj)) (£,gn )

(f
2
g )

" -

<*3«0> U)
2

(f
2
g ) 60

^^O^ 1

=

(5-19)

(5-20)

(5-21)

(5-22)

Where (f.g.) denote (2 x 2) determinants:
i j

(f
l8j )

-

*t «J

(5-23)

In order to eliminate d) from Equations (5-17) and (5-18) by Bezout's

method it is necessary to force the determinant of the coefficient matrix

in Equation (5-23) to zero. Thus the constant zeta loci for the case

m = n = 3 are given in non-parametric form by:
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t

(£3g2)
(f
38l ) (f

3
8 )

Z 3< f
k'Sk> " (f3Sl ) ((f

3
g ) + (f^)) (f

2
8 )

(f
3
8 ) (f

2
s ) <Vv

= (5-24)

For cases where m = n ^ 3, a determinant similar to (5-24) can be

developed by forming n equations as in (5-19) - (5-21). When m = n = 4

such a procedure gives the following determinantal equation for the constant

zeta loci:

V*'/3 '?) =

(^s )

(f
4S2

}

< f3*o>

<w
Uf4s ) + dy^))

(C-
3
s ) + (r^))

(f
26 )

(f
4s )

^ )

(f
2s )

(r
Ls )

= o

(5-25)

The following example will demonstrate how Bezout's method is applied

to obtain the constant zeta loci:

Example III

Let us again consider the symmetrical parallel-tee network. Equa-

tions (5-13) and (5-14) yield:

f
3

=
'*fi

U
3

f
2

= + 2 £U
2

f
l
" 2^l f = +U

h
= -oys u g

2
- +2pu_

x 8] _

= -2
(3 U_ 2
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Substituting the appropriate functions of zeta into these expressions and

forming the (2 x 2) determinants for the (f.g.) we obtain:

(f
3
g
2
) = +2<X/3

2

(4f
2
-l)

(f
3
g ) = -4*f3

2

f (4>T
2
-1)

(f
3
g ) = (4=X I3f

2-°<p )(4^
2
-l)

(f
2gl

) = 4(3
2
(4iT

2
-l)

(f
2
g ) = -4pf(4^

2
-l1

(f
lg()

) = +2(3 (U?
2
-l)

When these are substituted into Equation (5-24) we obtain:

Z
3

( * ,

f<9
, ^ ) = o^ 3

(4;r
2
-l)

3

+2(3 -4(i£

_4<*(S} (4^ £
2 + 4|3 - o<

)

(4o<^ 2
-^) -4?

(4f -1)

+2

=

Which when expanded gives the constant zeta loci in non-parametric form:

Z
3
(« ,/8 ,/) = fjQ

3

(4f
2
-l)

3
[(-32*?

2

+16)f3
2
+ (64* f

4
+16 *

jf

2
-32 Jr

2
-

8*0/3 + (-64*
2

f
2
+ 48o<

2

?
4

-12«<
2

£
2
+ * 2

) ] =

Observe that the determinant obtained by Bezout's method has the op-

posite sign from that obtained by Sylvester's method. Sylvester's method

produces the resultant of the functions f ( & ) and g( 00 ), while Bezout's

method produces the negative of the resultant (8). Since multiplying both

sides of the determinantal equations by -1 does not introduce extraneous

common factors of f ( U) ) and g( (D ) , this sign difference can be ignored.

It would appear at first that Bezout's method would be easier to apply
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than Sylvester's method because of the reduction ie order of the deter-

minants that it affords. However, Sylvester's determinant has many null

elements as well as functionally simpler elements than Bezout's determinant,

It is the author's opinion that Sylvester's method is somewhat easier to

apply.

Equations of the Constant Omega Loci

Using Theorem (II for the cases j = 0, j = 1, ...,j= (n-1) we

obtain:

(5-26)

n

y m> :Wp °

K-O

J (""\A^n>-1) " °

These equations may be written:

(-l)°a <0°U + (-l)
1
a
1^ + ... + (-l)

n
a
n
Wn

U
n

=0

<-l)°a «> U_i + (-l)
l
a
l
u)\

Q
+ ... +(-1)^0)^^-0 (5-27)

t in
'

°
(-1) a + ... +(-l)

n
a cdV =
n 1

»U^ (-1) a^U/jJ
Making use of the relation U(£) = - U (*T) and Un

= and rearranging

the set of equations (5-27) we obtain:

(-l)
3^ JO

1

f(-I)
2
a
2
^-(-l) ajo ] ...

[(-1) a &i -(-1) a A) J...
n n-

2

, n-1 , . n-I
-1 a w

--1

XI n
n

(-1)%^

= (5-28)
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The set of equations (5-28) are linear and homogeneous in the quantities

IL . Thus, for a non- trivial solution to exist, the determinant of the
k

coefficient matrix in (5-28) must vanish. This condition specifies the

relation nacoojary among the a and <0 which specifics the constant omega

loci

k

W(a
k
,0>) =

(-1) aw1

[(-l)
2a^2

-(-l)°<o°J ...

r/ t \
A n , . xrx-2 n-2

K-l) a to -(-1) to]...

n-1 ' n-1
(-1) a

n_i^---

(-l)na a)
n

(-1) ap.to

=

(5-29)

Example IV

Let us apply this procedure to obtain the constant omega locus for

the zeros of the symmetrical parallel-tee network. From Equ-iL^w.. (3-2)

the zeros of the transfer function for this network are the roots of:

3 2
6/(3p +2(3p -:- 2/Sp + 1 =

Applying theorem II, we may write as in Equation (5-26):

(-i)
1
(2^)(iu

1
• ( :0

2
(2(3)u)

2
u
2

+ (-i)
3
(*/3 ) *>

3
u
3

-

C-i)°(i) <A_i -r (-i)
2
(2/a)o)

2
u
1

+ (-i)
3
(*/3) 4>

3
u
2

=o

(-1)°(1)(0°U + (-l)
1
(2j8 ) (J-TJ^ + (-1)

3
(<^/S)6J

3
U
1

=

(5-30)

(5-31)

Using the relation U U, these equations can be written:
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(-l)
1
(2p )oo

1
(-l)

2
(2^)co

2
(-l)

3
(«v|S )a)

3

[(-l)
2
(2^)^

2
-(-l)°(l)aJ°] (-1)

2(^ )<d
3

=

[(-l)
3
(*p )t0

3
-(-l)

1
(2p)tO

1
] -(-1)°(1)«0° u\

Setting the determinant of the coefficient matrix to zero we obtain:

W(o(,^,6)) =

-2ftGJ +2(3<0

(2/Q u)
2
-l) -c*^ a)

3

(2,660 - *p«)
3
) -1

- (5-32)

Which, when expanded becomes:

Thus the equation

2* p
2
<0
4

+ 2 0a)
2

- 1) =

(<tf
2
A)

6
- 2o<a)

4
)|Q

2
+ (+2A)

2
)/S -1 =

gives the constant omega loci except where ^ = 0, ^ = or A)= 0.

(5-33)

(5-34)
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6. Equations of the Constant Bandwidth Curves

In this section, equations will be developed for displaying curves of

constant bandwidth upon the parameter plane.

Let us define what is meant by a constant bandwidth curve:

"A constant bandwidth curve for G(i <U) , ) = M is a curve drawn upon the para-
b

meter plane which specifies the relation between the parameters necessary

if the transfer function G(s), which is a function of the parameters, is

to have magnitude M at the real frequency 4) ,
."

b

Once such curves are obtained for selected values of M, the frequency

response G(j t)) may be sketched. Alternately the constant bandwidth curve

corresponding to some M and U) specification can be drawn, and from this

curve values of the parameters can be found which will guarantee that the

specification is met.

Consider the following rational transfer function G(s):

m . m-1

r( . V + Vi s + — + V + qo
G(s) = = Q(s ) (6-1)

n n-1rs + r .s + . . . + r, s + r_
n n-1 1

Where the coefficients of Q(s) and R(s) are of the form:

q
p " V + fp^ + Sp*/3 + h

p
;p =

'
l

>
'"m (6 ' 2 >

r. V* + \P + C\c*P + d ; k = 0, 1, ...n (6-3)

Thus, G(s) may be written:

m

£_, (e^ + f a + g o< (i + h ) s
P

p=0 p p p p
G(s) = ^ (6-4)
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Consider now only real frequency, s = j ^> , this can be written:

G(jU) )
=

m , m

C (-l)^ P(e*+f
p
p+g

p
^ +h

p
) + j EM^Vte^+fpa+y/J*)

p=0 K r p=l
even odd

2 (-D
%k
W
k
(a
k
^+b

k
^+c

k
o
<(i

+d
k

) + j E (-D
%(k_1)^ k

(a
k
o< +b

k
|S +c

k
V

/
9 +d

k )

even odd

(6-5)

Now let a)= 00,» some fixed value of u) , and also define:

n

A - Z_. (-1) ^ Kat J etc. for B , C , D (6-6)
r

k=Q
d k r r r

even

A
i

" Z. (-D
%(k_1)

o)
k
a
k

; etc. for B , C , D (6-7)

k=l
odd

m

E = /_. (-iyP u)l e > etc « for F ,G , H (6-8)
r *—

i

b p r r r
p=0 r

even
m

.
= Z (-i)

%(p_i
E. = Z_i (-l)^ vr

' a) * > etc - ^ F., G., H. (6-9)
p=l b p

ill
odd

Using definitions (6-6) thru (6-9), Equation (6-5) can be written:

(<*E
r
+/8F

r
+ ^6

r
+ H

r
) + j(o^E

1
+ /3F. + *,5 G. + H

j

.)

G(j ft).) = (<* A +/3B + */3 C + D ) + j(*A. +^B,+^C.+ D.) (6-10)
D rr'rr i'i 11

Using (6-10) and defining the magnitude of G(i &) ) as M we obtain:
D
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(otE
r
+ffF

r
+ ^G^H^+^E^/SF^Q^G.+H,) 2

(6U)« |G(jfl)
b )| (^A

r
+/3B

r
+^ C^D^^C^A.+ ^B.+^C^) 2

Which when expanded becomes:

, 0(^,0)
M - e(< ,p) (6-12)

Where:

0<«, £)=<*
2

(9

2
(G

2
+ G

2
) + 2o<

2
/3(E

r
G
r
+ E.G.) + 2<*

/
S

2
(F

r
G
r
+ F.G.) +

«x
2
(E

2
+ E

2
) +/3

2
(F

2
+ F

2
) + 2<X$ (E F + E.F.) + (6-13)

r i ~ x r 1 ~ r r i i

2^(E H + E.H ) -I- 2/8 (F H -I- F.Il.) + (II
2
+ H

2
)rr i i ' r r i i r l

0(°<, a) = o? &
2

(c
?

: c
?
) •: 20OB (a c :• A.c.) + 2 * a 2

(b c + b,c.) +
r I r i

l r r i i r r r i l

^(A 2
! A

2
) I- fi)

2
(B

2
+ B

2
) + 2=<(3 (A B + A.B.) +

r i r r l n r r i i

2o<(A D + A.D.) + 26(BD + B.D.) + (D
2
+ D

2
) (6-14)-rr ii * v r lir i'

v '

Equation (6-12) can be written:

0<<X
,fl

) - (M
2
£ (o< ,/3 )) = (6-15)

Substituting (6-13) and (6-14) into (6-15) and expressing the resulting

equation in the form of a quadratic in Q we obtain:

(M
2
R
1
-R

2
) (3

2
+ (M^ - W

2
) p + (M

2
V
1
-V

2
) = (6-16)

Where:

R. = (B
2
+ B

2
) + 2 o< (B C + B.C.) + o<

2
(C

2
+ C

2
)

1
v r l

v rr ii^ v
r i
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R = (F
2
+ F

2
) + 2°< (F G + F.G.) + c*

2
(G

2
+ G

2
)

2 r i rr 1 i r 1

W, = 2(B D + B.D.) + 2o< (A B +A.B.+C D +C.D.) + 2<*
2
(A C +A.C,)

1 rr 11 rriirrii rrii

W„ = 2(F H + F.H.) + 2<*(E F +E.F.+G H +G.H.) + 2c<
2
(E G +E.GJ

2 rr 11 rriirrii rrii

V, - (D
2
+ D

2
) + 2«<(A D + AD) +<K

2
(A

2
+ A

2
)

1 r i r r i i r l

V - (H
2
+ H

2
) + 2^(E H + E,H.) +o<

2
(E

2
+ E

2
)2r l rr ii r i

We may now solve the quadratic equation (6-16) for p as a function of °^
,

a) ,, and M. This solution is:
D

-(M
2
W.-W ) + ./(mV-W) 2

- 4(M
2
R

1
-R

9
)(M

2
V

1
-V.)

A _

L l V L L l Z l L
(6-17)

1 2 2
2(M

Z
RrR

2
)

The constant bandwidth curve corresponding to some desired M = M_ and

60 , = oJ can be computed from (6-17) by a digital computer. The
b bU

procedure is to fix M and cd , in (6-17) at the desired values, increment «<
b

over the range of interest, and at each value of ©< to compute the corres-

ponding values of /3 . The two roots of (6-17) give the two branches of

the desired constant bandwidth curve. The reader is referred to section 10

where constant bandwidth curves are computed and discussed for a loaded and

null adjusted parallel-tee network.
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7. Equations of the Constant Q Loci for Second Order Systems

Recent interest in the Q of second order RC networks, accompanied by

difficulties in applying the conventional definitions of Q, led Morris (4)

to define Q mathematically as a parameter of the characteristic equation.

He rearranged the second order characteristic equation into the form (7-1)

which defines Q:

T
(7-1)

2 2 T
T s + -^-s +1 =

Dutta-Roy (9) has pointed out that Q so defined is equivalent to an

earlier definition proposed by Bolle (10). Bolle's definition for the

second order characteristic equation:

as + a s + a «= (7-2)

is:

Q

(V2>

2~S

(7-3)

In this section equations will be obtained which will permit loci of

constant Q to be displayed upon the parameter plane for variable parameter

second order characteristic equations of the form (7-2). It is assumed

that the variable parameters appear in the coefficients of (7-2) in the

following manner:

s- V* + \P +a
k «fi +£

k
<7 -4 >

k = 0,1, and 2

Squaring both sides of Equation (7-3) and rearranging we obtain:

2 3L>
Q a. V2 =

° (7-5)

Substituting (7-4) into (7-5) and writing the resulting equation in the
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form of a quadratic in , we obtain:

[(Q
2
d*-d d

2
)<*

2
+ (2Q

2
c
1
d
1
-c

()

d
2
-c

2
d )o(. + (Q

2
c
2
-c
Q
c
2
)] /3

2
+

[(2Q
2
b
1
d
1
-b d

2
-b

2
d ^ 2

+ W\c 1+Xi\trV -b Vd2
f -d f

2
) <* +

< 2« 2c
i
fr c2Vc

o
f2» z

3 +

[ (Q
2
b
2
-b b

2
)o< 2 +( 2

('2b
l
frb

2
£0-bO

£2^ + <«
2£

l-
£
O
f
2> ! "° (7 " 6 >

The desired constant Q loci can be obtained from (7-5) by use of a

digital computer. The procedure is as follows:

1. Fix Q in (7-5) at a value for which the locus is desired.

2. Increment ©< over the range of interest.

3. For each value of ©^ , solve (7-5) by the quadratic formula.

4. The two solutions of (7-5), (3. and /3 , plotted as ordinates

on the parameter plane with &( as abscissa define the two

branches of the desired constant Q locus.

5. Repeat steps 1-4 for each value of Q for which a locus of

constant Q is desired.

For examples of this procedure the reader is referred to Section 10

where several loci of constant Q are obtained for a variable parameter,

loaded, and null-adjusted parallel-tee network.
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8. Sensitivity Analysis by Parameter Plane Techniques,

a. Introduction

The polynomial equation

A vk = ° (8_1)

k=0

whe re : a
k

= f^.^.....^)

has n roots. Each of these roots is a function of the parameters q
1

, q„,

...,q ,...q . It is the objective o f this section to show how each of

these roots vary as the parameters q change.

Let us denote the i complex root pair of (8-1) by:

? ±
«J i± J coiS

/T- J*
t

= - i, *J<
: J CO, \

and the j real root of (8-1) by:

r. = CT . (8-3)
J J

Let us now define two types of sensitivity; macroscopic sensitivity

and microscopic sensitivity.

Macroscopic sensitivity is the sensitivity of the roots (8-2) and (8-3)

to large changes in the parameters q . These sensitivities may be defined

by:

U.

s
1>r

- <A?
t
)/(A9

r
)

S
i,r -<**>!>/<*? r > AJro, iH (8-4)

<f;

/.» •l*<r
i
»i±1

r ) Aft =o,i*

S. denotes the change in the damping ratio 7 of the complex root pair

to.
r. due to a finite change in the parameter q . S. denotes the change in
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the undamped natural frequency of the complex root pair r. due to a finite

m
change in the parameter q . S. denotes the change in the real root

r due to a finite change in the parameter q .

Microscopic sensitivity is the sensitivity of the roots (8-2) and (8-3)

to infinitesmal changes in the parameters q . These may be defined as:

.* = Zr ./ «tyi,r < 1 ' r

\\x
= i*>J*9 r (8-5)

J,r j I r

The interpretation of these microscopic sensitivities except that the para-

meter changes are infinitesmal rather than finite.

b. Obtaining Macroscopic Sensitivity from the Parameter Plane

The procedure for obtaining macroscopic sensitivity directly from

the parameter plane is best demonstrated by an example.

Example V

Let us consider some third order polynomial equation:

a
3
s
3
+ a

2
s
2
+

&l
s + a

Q
= ; a

R
= f

k<*,£>

Let us also imagine that we have obtained the parameter plane for this

polynomial and that it appears as shown in Figure 3. Let us presume that

we have selected <X= o< = 3.8 and ^3 = /S = 2.4 in order to place a pair

of complex roots at p = 0.2 and Wm 0.7 and that this choice results in a

real root at (T = - 3.0. We wish to determine the macroscopic sensitivities

y f <u u) <r r
S\. , S , S , S^ , S , and S. , for an increase

1

of one unit in

both o< and ^9 . From Figure 3 we determine:
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Z0.*/

I
—v— c^

Fig. 3 Macroscopic Sensitivity from the Parameter Plane,

3
-<

&£
A*A£=o
a^
^Z*=0
AW
A«

Aa)

Ap=o

Ao*

A(i=0A*

Ac-

A(*a«=o

0.28-0.20
4.80-3.80

0.12-0.20
3.40-2.40

0.80-0.70
4.80-3.80

0.77-0.70
3.40-2.40

2.20-3.00
4.80-3.80

4.20-3.00
3.40-2.40

= 0.08

= -0.08

= 0.10

=-0.07

- -0.80

= 1.2
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More important perhaps, than these numerical values of the macro-

scopic sensitivities is the qualitative, but enlightening information

about the sensitivity of the roots which can be obtained by careful in-

spection of the parameter plane. If the constant zeta, omega, and sigma

loci have been drawn for constant increments in each of these quantities

respectively, then one can immediately see that the most sensitive areas

are those in which the loci are tightly spaced. This is like looking at

a contour map of terrain- steep areas are highly sensitive areas.

c. Obtaining Microscopic Sensitivity from the Parameter Plane

Microscopic sensitivity can be obtained either by the method of

Kokotovic and Siljak (5) or by an alternate method to be developed here.

Kokotovic and Siljak derive relations for sensitivity from the basic para-

meter plane equations. The new method, to be described here, obtains

sensitivity relations directly from the non-parametric equations of the

constant zeta and omega loci which were developed in section 5. In those

cases where the equations of these loci have already been obtained by pre-

vious calculation, sensitivity relations can be more rapidly developed from

these loci equations than by the method of Kokotovic and Siljak. As back-

ground, the method of Kokotovic and Siljak will be discussed first, and

then the method of obtaining sensitivity relations from the non-parametric

equations of the constant zeta and omega loci will be introduced.

(1) Method of Kokotovic and Siljak

The basic parameter plane equations are:

n

f- Z t-l)
k-1

a, cd\ ( X) = (8-6)

k=0
k k " i (

39





n

8 = Z (-D
k
a. u)\ ( / ) - (8-7)

k=0
k k

'

Functionally these equations can be written:

f ( f , <0 , a
fc
) = (8-8)

g( J t (d , a
k

) = (8-9)

Consider that ¥ and (0 in (8-8) and (8-9) are implicit functions of the

a . The a, are in turn explicit functions of the q .

Thus:

Zf/hq
±

= t)tf}u>
±
n)tO ./^q.)+(<}f/ ^)(^"/^q.)+(^f/c)a

k
)(Ja

k
/Jq

i
)

(8-10)

^g/^q. = (dg/d*)
±
){}u)

i
/6>q

i
)+(^g/^)(^/^q.)+((3g/<9a

k
)(o)a

k
/^q

i
)

(8-11)

But from (8-6) and (8-7):

hti^ = (i/ ^.) 2, <-i)
k
"V.

k=0
\*:\^?> -aj (8-12)

W?i = I C-l)
k-\^-

k.l<? =4 (8-13)

k=0

n

^g/^ - (1/ *>
t)

Z C-D^^Xc^') B
i

< 8 - 14 >

k=0
n

<5g/<5/ - Z (-l)
k
a H)h\(l) = Bj (8-15)

k=0 * Z

Substituting (8-12) thru (8-15) into (8-10) and (8-11) we obtain:
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n

a) .)( Zto /J q ) 2j (-
k-1, k.

^f/^q. = (1/AJ .)( SCO /Jq) Zj (-D ka «»/X 1
+

i i i r
k=Q

k K-i

n

k=0
k " 1

n

A (Ja/^qH-l)^ 1
fl>\ = (8-16)

k=0
k r '

k_i

n

k=0

n

k=0

n

2, (^a,/^q )(-l)
k
*J.\ =0 (8-17)

k=0
k r

<
k

Let:

n

:J,r Z (^v^V <- 1 >

k ' 1

«;'\.i

n

4i . I *+,<*+,

(8-19)

(8-20)
k=0

We may now rewrite (8-16) and (8-17) as:

(A*/ U)
±
) J(U

i
/iq

v
+ (Bj) £?

±
/dq

v
= -C^

r
(8-21)

(A
2
7 V i> <5&»

t
/c3 H

r + (Bg) ^jT^ <*
r

"C
2, r

< 8 " 22 >

Equations (8-21) and (8-22) .ire simultaneous equations, from which the

desired sensitivities ( oX Id q ) and (0 6J ./Oq ) can be obtained.
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d. Sensitivity Relations from the Constant Zeta and Omega Loci

In Section 5 it has been shown how the equations of the constant zeta

loci Z(a , )f• ) = and the constant omega loci W(a , u) .) = can be

obtained in non-parametric form. From these equations we can obtain the

relations for the microscopic sensitivity directly:

Z(a
k , f ) = (8-23)

W(a
k , «/; ) - (8-24)

from which:

if J$\ = -(^Z/^a
k
)/(^ Z/ Jf ±

) (8-25)

providing OZl 6 f . ±

}*>
m
/d a -(^W/^a

l
)/(Jw/^ J ) (8-26)

providing 0W/ o uO . 4

For an example of sensitivity computed from the non-parametric equa-

tions of the constant zeta and omega loci the reader is referred to

Section 11 where root sensitivity to parameter variations in a lattice net-

work is discussed in detail.
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9. Parameter Plane Analysis and Design of the Symmetrical Parallel-

Tee Network

a. Introduction

The symmetrical parallel-tee network shown in Figure 4 has

been the subject of several papers (9,10,11). The reason for this interest

stems primarily from the fact that it is possible to obtain complex zeros

of transmission using the network. These may be placed anywhere in the

left half s-plane and as far as 30 degrees from the imaginary axis into

the right half s-plane by suitably choosing the network elements. From

the transfer function of the network, Equation (9-1), it can be seen that

the poles and zeros of transmission are functions of the parameters o( and

:

E
o
(p) = */3p

3
+ 2/3 p

2
+ 2/3 p + 1 (9-1)

E
i
(p)

o66 P
3
+ (CX+2/S + 2*fi )p

2

+(*+2f3+2)p+ 1

where: p RCs

Barker and Rosenstein (12), using root locus techniques, investigated

this network. Their analysis, while complete and well done, was compli-

cated considerably by the inherent single parameter capability of the

root locus technique. This section approaches the same problem with a

two parameter method of analysis and design - the parameter plane.

By employing parameter plane techniques, graphs are prepared for

the polynomials which form the numerator and denominator of the transfer

function. These graphs, with o( as abscissa and /3 as ordinate, display

directly the roots of the polynomial which result for any choice of the

parameters o< and /3 . From these parameter planes for the network, the

regions of the s-plane in which poles and zeros of transmission are possible
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are immediately evident. Likewise values of the parameters ©( and
f$

necessary to place either poles or zeros at some desired point within these

regions can be directly read from the curves. The parameter plane is there-

fore a tool of both analysis and design.

Loci of constant bandwidth are drawn upon a parameter plane for this

network. These consist of a family of curves along any one of which the

frequency at which the response of the network is down N db is constant.

For any choice of o< and ^3 the frequencies at which the response is down

N db can be read directly from these loci. Loci for the conventional -3db

bandwidth are presented in this section.

Thus it is possible to select values of the parameters of and A

which guarantee suitable s-plane locations for certain poles and zeros

while indicating the bandwidth determined by this choice. Conversely o<

and /9 may be chosen to guarantee upper and lower -3db frequencies while

offering a selection of poles and zeros which may be read from the curves.

The curves which are presented in this section are frequency normalized

and hence universal. They may be used to investigate any symmetrical paral-

lel-tee network of the form shown in Figure 4.

The advantage of the parameter plane over other methods which have

been used to analyze and design this network are the rapidity and ease with

which the capabilities and characteristics can be determined from the curves

and with which the parameters may be selected in order to produce desired

network behavior.

b. Approach to the Problem

The objective of the analysis to follow is to determine

in what manner the poles, zeros, and -3db frequencies of (9-1) change as the

parameters o( and A are varied. This can be accomplished by preparing three
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parameter planes; one each for the poles, zeros and -3db bandwidth of (9-1)

Since some of the equations of these parameter planes have already been

developed in earlier sections, they will be recalled as appropriate,

c. Poles of the Transfer Function

Since the network shown in Figure 4 is passive RC, all of

the poles will lie along the negative real axis in the p-plane. Let C

denote the value of p at which such a pole of (9-1) occurs. We may thus

assert that poles occur at those values of <T which satisfy (9-2):

t* £<T
3
+ (2 (!>

+ 2o<(i +c()(r
2
+ (2 (5 + 2<X + 2)CT+ 1 = (9-2)

Rewriting (9-2) in the form of a plane algebraic curve in the * - @

plane we obtain:

( <r
3
+ 2 <r

2
) o<(3 + (2cr

2
+ 2 (T ) (i + (<r

2
+cr)o( + (2(T+ i) = o

(9-3)

Equation (9-3) represents a family of hyperbolas in the o( - A plane. One

hyperbola occurs for each selected value of 0"
. Since (9-2) is satis-

fied by three values of C for each choice of o^ and 8 , it follows that

each point in the parameter plane will have three hyperbolic branches pass-

ing through it.

The curves represented by (9-3) can be hand calculated for selected

values of <T" , but since this is a tedious process, a digital computer was

used to obtain them. The resulting curves which specify the pole values

for any choice of the parameters are shown in Figure 5. One enters this

figure with values of o< and /9 and then reads the values of the three

poles directly. Alternately one may select values of o( and
ft

to produce

some selected pole values.
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d. Zeros of the Transfer Function

In this instance the problem is much more interesting since

complex zeros are possible. The zeros are the roots of:

^p3
+ 2

/
Sp2 +2

/
9 p + 1 = (9-4)

Since o< and /3 are presumed real it can be asserted that (9-4) has at

least one real root. As before let p = CT in (9-4) and rewrite the re-

sulting equation as a plane algebraic curve in the c* - jQ plane:

a~ 3 o</3
+(2<r 2

+ 2<r)^3 +1 = (9-5)

Equation (9-5) also represents a family of hyperbolas in the ©< - ^3 plane.

These are shown in Figure 6. Note that in some regions it is possible to

have three real zeros.

In describing the location of complex zeros of (9-4) the zeta and omega

notation familiar to control systems theory will be used:

/

2

s - - Jco ±j CO V 1-
J (9-6)

The non-parametric equations for the constant zeta and omega loci which were

developed for this network in Section 5 will be employed. The equations of

these loci are repeated below. For their derivation the reader is referred

to Section 5.

Z( of
,fi , £ ) = - cX£

3
(4

7f

2
-l)

3
[(-32 « j

2
+ i6)/3

2
+ (64* 5f

4
+

16 o( Tj
1

-32 J
l

-So()A + (-64*
2

J
6
+ 48-<

2
jr

4
- 12*

2

f
2
+ * 2

) =0

(9-7)

W(°^ , /3 ,tO ) - *
/
Soi

3
(o<

2

/
S

2
cJ - 2 c^/Q 2^ 4 +2

/

6*J 2 -l)=0

(9-8)
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A digital computer, programmed as described in Section 5, was used to

obtain the constant zeta and omega loci which are shown in Figure 6.

e. -3db Constant Bandwidth Curves

One may obtain the desired -3db constant bandwidth curve by

employing the procedures which were developed in Section 6. Referring to

that section we note that several quantities must be substituted into

Equation (6-17) in order to obtain the curve which we desire. In order to

facilitate substitution into (6-17) the following quantities are tabulated:

From the transfer function (9-1) using the notation of Equations (6-2)

and (6-3):

a
k

b
k

C
k

d
k

e
k

f
k 8k \

1 1

J*>b j2^ j2*)
b

j2*
b

< b < b

-*z -<

1

2

3

From Equations (6-6) thru (6-9) using values from (9-9) one obtains:

A B C D E F G H

Real
2

-**>b -v>l 1 < 1

Imag Ab 2fc)
b < 2% 24

D
-J

b

(9-10)

From Equation (6-16) using the values from (9-10) one obtains:

4 2 4 2 4 2 6
r = 4W + 4aJ:~ + 4* a) + 4* oj7 + «x of
I b b b b b

W, = 2 «
2
o)
4

- kail (9-11)
i b b
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W
2

= -4<O
b

2

Of
V n

- 1 +«C to? + <* A^ + 2°<6A' + 4*0,
1 b b b b

v
2

= i

The quantities (9-11) are used to digitally compute values of Equation (6-17)

corresponding to selected values of AJ with M = 1/ j 2 as required for the

-3db curves. The resulting curves are displayed in Figure 7.

f . Interpretation of the Parameter Planes

The parameter plane for the poles of the transfer function

which is shown in Figure 5 reveals that for < o(
, ^ <^ 2.5 the three

poles are confined to regions along the negative real axis as shown below:

g^Sj^SSgSZ^gS^SSS^SI f777mm7m
\ **<T

-1 -fe -5 -V -3 -2 -/

The parameter plane shown in Figure 6 for the zeros of the transfer

function reveals the following information regarding the zeros:

(1) The positive »< axis coincides with the f = -\ locus

indicating that zeros may be placed as far as 30 degrees from the imaginary

axis into the right half p-plane.

(2) The zeta = 1 locus separates the region of 3 real zeros

from the region of 2 complex conjugate zeros and 1 real zero.

(3) The zeta = locus is a straight line with equation

°^ 4p • This indicates that if one is interested only in those cases

where a pair of conjugate zeros are placed on the j A) axis, then he may

substitute this linear relation between the parameters into the network
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actions thus reducing the problem of analysis and synthesis to one of a

single parameter.

(4) The zeta = \ locus coincides with the omega 1 locus

indicating that an addition.nl degree of frccidom exists which may be used

to specify other poles or zeros in addition to the specification that a

pair of complex conjugate zeros occur at J = %, 60 = 1.

C
,! I £.Q

Fig. 4 Symmetrical Parallel-Tee Network
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.8 2.0 2.2

note:
curve labels refer to
negative real root values

Fig. 5 Poles of the Symmetrical Parallel-Tee Network
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Wn
= 1.2

xtoj= 1.5
" cr=-2.0
£=C7=-4.0

.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

a

Fig. 6 Zeros of the Symmetrical Parallel-Tee Network
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.2 .4 .6 B i.O 1.8 2.0 2.2 2.41.2 1.4 1.6

a
NOTE! CURVE LABELS REFER TO NORMALIZED -3db FREQUENCIES

Fig. 7 -3db Constant Bandwidth Curves for the Symmetrical Parallel-
Tee Network
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10. Loaded and Null Adjusted Symmetrical Parallel-Tee Network -

Parameter Plane Analysis

a. Introduction

The null - adjusted symmetrical parallel-tee network provides

a means of obtaining frequency selectivity without the use of inductors.

Hence it is a very useful network at low frequency where inductor size be-

comes unacceptably large as well as in integrated circuits where the current

technology does not permit inductors of reasonable size to be integrated.

A number of articles have considered the zero source - infinite load

resistance case (9,13,14), and a few have considered the effects of other

finite combinations (10,11,12). These latter articles generally consider

either the source or resistance to be fixed and the load resistance to be

variable or vice-versa*.

This section considers the problem from a different point of view and

with a two parameter tool of analysis and design - the parameter plane.

The two parameter nature of the problem is evident by inspection of Figure

8 and Equation (10-1):

E
Q (P) - g (P

2
± 1) (10-1)

E
i
(p) (4 tf/6 +«V +/S)p

2
+(4 «*/S +4o< +4/S+2)p + (o< +/9+ 2)

where: p = RCs, c* = R /R ,
/S = R /r

Parameter planes will be obtained for this transfer function. They

will show the poles, Q, and frequency response characteristics associated

with this network which result for any choice of the parameters o< and/9 with-

in the range < «*
, /3 < 3. Alternately o< and /S may be chosen from the

curves to obtain desired characteristics within the capabilities of the
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network.

Loci of constant Q discussed in Section 7 are also obtained. These

loci show directly what value of Q results for any selection of parameters

o< and (3 . Conditions are specified which permit Q to be related to the

bandwidth of the network.

Constant bandwidth curves are obtained as described in Section 6.

For any choice of parameters these curves immediately give the upper and

lower frequencies where the response of the network is down N db from the

response at infinite frequency. Curves are presented for several values

of N, thus permitting the frequency response to be sketched for any chosen

values of source and load resistance.

b. Poles and Zeros of the Transfer Function

The parameter plane graphically displays the roots of a

polynomial whose coefficients are functions of two variable parameters.

In the general case these polynomials (which may be the numerator or denom-

inator of some network function) can have complex as well as real roots.

In the case of Equation (10-1), however, the following observations are

made:

2
The zeros are fixed at p = - 1

The poles are all real and lie on the negative real axis

in the p-plane since the network is passive RC.

Thus it is necessary to investigate only the poles of (10-1) and this is

considerably simplified by the fact that the poles are all real. To obtain

the parameter plane for these poles let p = 0" be a pole of (10-1). Making

this substitution into the denominator of (10-1) and rearranging the result-

ing equation into the form of a conic section in the oC - /9 plane one obtains:
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(4 <T
?
- + k(T ) <X^3 + (o-

2
+ 4(T+ 1)</+ (C 2

+ 4c7+l)/3 + (2<f+ 2) =

(10-2)

This equation represents a family of hyperbolas; one hyperbola for each

value of 0"
. These are plotted for several values of 0" and are shown in

Figure 9. One may read the poles, which result for any choice of ex, and

P , directly from the curves.

Example VI

Assume that a parallel-tee notch network has been designed to reject

60 cps. The notch filter has been designed so that R 2660 ohms and C = 1

microfarad. The network is driven from a source resistance of 5000 ohms

and drives a load resistance of 2500 ohms. It is required that the poles

of the transfer function be obtained. From Figure 8 one obtains:

oi = 5000 =1.88
2660

(8 = 2500 = 0.94
2660

From Figure 9 the normalized poles are read:

0? = -1.78

C-l = -0.27

Which, when un-normalized become:

T . . ikzs . _670
2.66 x 10

-0.27

^2
:

2.66 x 10"3

The network transfer function is thus:
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E
o
(s)

= /3 r s
2

+ ^)
2

E.(s) bot/9+4 + (s +0~p (s+^p

- 0.95 f s
2
+ 377

2
-[

(s+670) (s+102) J

The curves of Figure 9 can be used to place one of the poles at a de-

sired location while maintaining some control over the location of the other

pole. This is accomplished by changing a^ , (3 , or R. Changing R and

assuming that C is also changed appropriately to keep the zeros fixed changes

both ©( and /S .

Example VII

Suppose that in the previous example one is able to change the source

resistance and desires to do so in such a manner as to cause the pole at

s = -670 to move to s -750. Thus the new normalized pole location be-

comes: p. = -2.00. Since the load resistance is fixed at 2500 ohms, /S

remains 0.94. From Figure 9 note that the C = -2.00 locus intersects the

P =0.94 coordinate at ©< = 1.07, and that the other pole is thus located

at p_ -0.335. When un-normalized these pole locations become:

s
x

= -750

s
2

= -126

The new transfer function becomes:

E
o
(s)

= 0.156 [ s
2

+ 377
2

]

E.(s) (s + 750)(s + 126)

The new source resistance required becomes:

R = ©< R = 1.07(2660) = 2840 ohms
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c. Constant Bandwidth Curves

By making the substitution p = j fr) as discussed in Section

6, the real frequency transfer function is obtained for the loaded and null

adjusted symmetrical parallel-tee network:

E
o
(C° } = K( * , fi ) [ G( « , fi , 6))] (10-3)

E.(C0 )

Where:

a
(10-4)

G(D< * >ft) ) =
(4PT

/
(3 + o( + /g)(l-^

2
) (10-5)

[(o(+|9+2)-(4o<
/

Q+o<+
/
8 ) a>

2
] +j[ (4*/3 +4* +4£ +2)]

By inspection G( ©< , /3 t
W )—>1.0 as &J - «o . At any selected frequency

<0 , and attenuation level M at that frequency, the relation

G(* ,0 ,*> J = M (10-6)

defines a constant bandwidth curve in the o< - /9 plane. This curve specifies

the source-load resistance relation requires for (10-6) to be satisfied.

The attenuation level M can be thought of as the attenuation from the in-

finite frequency value of E (00 )/E.(O0 ), which is K( «<
, j$ ):

K( of
, ft ) = V 00

>

E.(oO ) (10-7)

In order to obtain the equation of the constant bandwidth curves Equation

(10-5) is substituted into Equation (10-6) and both sides of the resulting

equation is squared. This squared equation can be solved for /S as a

function of o( , CO , , and M:
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p -
(M

2
WrW

2
) + [(M

2
W
1
-W

2
)

2
-4(M

2
R
1
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Where in the notation of Section 6:
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W
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4
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Assisted by a digital computer, Equation (10-8) was used to obtain the

constant bandwidth curves for values of M corresponding to -3db, -6db, and

-20db. These curves are shown in Figures 10, 11, and 12 respectively.

These curves may be used to sketch the frequency response as indicated in

the following example.

Example VIII

For the conditions specified in Example VI, namely ©< = 1.88 and p

0.94, the curves of Figures 10, 11, 12 are used to obtain:

Db down from :

ite frequency
Lnfin-

gain s
-3 0.50 2.65

-6 0.61 1.84

-20 0.901 1.115
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The infinite frequency gain is:

K(1.88, 0.94) = 0.095

The zero frequency (DC) is:

«o<°> = g =0.195
E.(0) <*+£ + 2

The attenuation at CV = 1.0 is infinite since the network of Example VI

was designed for this condition.

The above information may be used to sketch the frequency response

of the network.

d. Constant Q Loci

As pointed out in Section 7, the Q of a second order network

may be defined as:

r- «th , _nd ,

. _ geometric mean of and 2 degree terms
st

1 degree term

where these terms refer to coefficients in the denominator or the network

transfer function. For the loaded and null-adjusted symmetrical parallel-

tee network, Q becomes:

[(4<*/S +*+l3)(* + /3 + 2)]^
^ 4 5f§ + 4V +4(3+2 (10-9)

Squaring both sides of Equation (10-9) and rearranging the resulting equa-

tion into the form of a quadratic in (3 obtains:

[16Q
2* 2

+(32Q
2
-4)©< +(16Q

2
-1)] £ 2

+

[(32Q
2
-4)©< + (48Q

2
-10)o( + (16Q

2
-2)]/S +

[(16Q
2
-l)o<

2
+ (16Q

2
-2)©< + 4Q

2
] =0 (10-10)
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Equation (10-10) was used to obtain the constant Q loci displayed in Figure

13.

Q defined in this manner is a mathematical parameter of the network as

discussed in Section 7. It is not in general directly related to the

frequency response, however, if the infinite frequency response is made

equal to the DC response as explained later, then the following relationship

holds:
f

Q = V—r- (10-11)
r
2

"
1

Where: f is the notch frequency

f is the lower -3db frequency

f- is the upper -3db frequency

It has been shown (10) that the null adjusted symmetrical parallel-

tee network under the conditions R f H. has a Q equal to 0.25.

Figure 13 shows that Q may be made larger than 0.25 by adding source re-

sistance. The maximum attainable Q is .353 and occurs at R R^ = 0.707R.

e. Locus of Symmetrical Frequency Response

Also displayed on Figure 13 is the locus of symmetrical

frequency response. This locus defines the source - load condition re-

quired for the DC response to equal the infinite frequency response.

2
Cowles (10) has shown that this requires R R = R /£ or equivalently

S Li

°t |S = \. Figure 13 shows that this locus also passes thru the point

of maximum Q. Thus a loaded and null adjusted symmetrical parallel-tee

network whose source and load resistances are chosen so as to maximize

Q will also have a symmetrical frequency response. As pointed out above

in sub-section d, the network under these conditions also is the most

selective by virtue of its optimum Q.
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Fig. 8 Loaded and Null Adjusted Symmetrical Parallel-Tee Network
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Fig. 9 Poles of the Loaded and Null Adjusted Symmetrical Parallel-
Tee Network

.
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ccW<£>.

Fig. 10 -3db Constant Bandwidth Curves for the Loaded and Null
Adjusted Symmetrical Parallel-Tee Network
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aH*2-

<a.

0.68

Fig. 11 -6db Constant Bandwidth Curves for the Loaded and Null
Adjusted Symmetrical Parallel-Tee Network
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0.920

0.918

0.916

Fig. 12 -20 db Constant Bandwidth Curves for the Loaded and Null
Adjusted Symmetrical Parallel-Tee Network
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Fig. 13 Constant Q Loci and Locus of Symmetrical Frequency Response
for the Loaded and Null Adjusted Symmetrical Parallel-Tee

Network

66





11. RC Lattice Network - Complex Zero Synthesis and Sensitivity Analysis

by Parameter Plane Techniques

a. Introduction

The RC lattice network which is investigated is shown in

Figure 14. The parameters ©< and & are real and variable in the arbitrarily

selected range < ©< , A <, 2.5. The transfer function of this network

is given by:

E
o
(p) = Ojg p

2
+ ( <*/3 -|8 + l)p + 1 (11-1)

E
i
(p) cv/3 p

2
+ (rt/3 +/3 + i)p + l

where: p = RCs

Frequency normalization makes the results which are obtained universally

applicable.

Parameter planes which are obtained graphically display the poles and

zeros of (11-1) which occur for any choice of parameters o< and j3 within

the range specified. These parameter planes show in what manner the poles

and zeros change as the parameters are varied. Using the parameter planes

one may select parameter values which are required in order to place poles

or zeros at desired p-plane locations within the capabilities of the net-

work. The analysis performed shows that it is possible to readily place

zeros anywhere in the complex region of the p-plane.

Macroscopic root sensitivity can be determined by inspection of the

parameter planes. Equations are obtained as described in Section 8 which

permit microscopic root sensitivity to be computed for selected root loca-

tions.
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b. Poles and Zeros of the Transfer Function

The poles of the transfer function are given by the roots

of:

<*/$ P + ( Mj3 +/3 + l)p+ 1 - (11-2)

Since the network of Figure 14 is passive RC, the roots of (11-2) all lie

on the negative real axis in the p-plane. Let p = G" be such a root of

(11-2) . Making this substitution into (11-2) and rearranging the result-

ing equation into the form of a conic section in the o< -fi plane one obtains:

( <T
2
+ <T ) °</3 -:- (Tj6 + (<T + 1) = (11-3)

Equation (11-3) represents a family of hyperbolas in the o( -
ft plane;

one hyperbola results for each value of <T . This equation is solved for

ft as a function of ©< and <T and used to graph the curves displayed in

Figure 15:

(3 = 7^ (11-4)

(<r +<? )«t +(r

The zeros of the transfer function are the roots of:

oifi p
2
+ ( of/9 + l - /9 ) P + i = o (11-5)

Following the procedures of Section 5 the constant zeta and omega loci are

obtained in non-parametric form:

(1) Constant Zeta Loci

f(CO) = 2 f <X(3fi)
2
+

(f$- <*fi
-1)4)+ = (11-6)

g(60 ) = 00>
2
+ ((3 -*/& -l)U) + 2$ =0 (11-7)

From which:

|2£ojS (p-^.'5-l)

Z(«<^S,^) - (g.ott-1) 2? :n-8)
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Expanding (11-8) one obtains:

Z(* ,/5 ,3f ) =-4^
2
V/5 [(*

2
-2o<+l)|$

2
+ (-4 j\( +2<* -2)^+ 1] = (11-9)

Thus:

(4jT V -2o(
2

<
- +2)±/^^-4 XV +2^ -2) - 4(* -2-C+l ) (11-10)

2(o<
2
-2oe+l)

2
gives the constant zeta loci everywhere except where 4 £ «^/5 = 0.

Equation (11-10) was used to obtain the constant zeta loci shown in Figure

16.

(2) Constant Omega Loci

Using Theorem II, Appendix II, for the cases j = and j = 1, one

obtains:

2
-( (5 - «p -\)UJ + oe^ScO'

(o^3w -1 )

u,

u.

= (11-11)

From which:

W(cV ,/S ,4J ) = o^3a)
2
(otya*J

2
-l) = (11-12)

Thus c^/S = 1/ (O gives the constant omega loci everywhere except where

2
of

'ft
00 - 0. Equation (11-12) was used to obtain the constant omega loci

shown in Figure 16.

c. Root Sensitivity

(1) Macroscopic Sensitivity

Root variations due to large parameter variations are read-

ily observed by inspecting Figures 15 and 16. In the case of the sensitivity

of the zeros of the transfer function, one can see that zeros with 0.3 < ^

<C 0.7, and 0.5 < CO K. 1.0 are relatively insensitive to parameter varia-

tions. Given a specification on permissible zeta and omega variation, one

can determine, practically by inspection, the required ©/ and /3 tolerances
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which will meet the specification.

(2) Microscopic Sensitivity

Zero sensitivity due to infinitesmal variations in the para-

meters may be readily computed from formulas derived from the non-parametric

equations of the constant zeta and omega loci as discussed in Section 8.

Substituting derivatives obtained from (11-9) and (11-12) into (8-25) and

(8-26) one obtains:

Q>u) j = - U) (H-13)

(H 2 oc

d<0 i = - CO (11-14)

d(3 2

where: <X(W^e0 2
+ 2) ±

h^ j
m

- $(8]
2
o< /3 -3o(

2
fl

2
+ 4 *^S

2
-4<*/3 - /3

2
+2 /3 -1 ) (11-15)

cU 2<*(8$
2
*7$ -* 2

<$
2
+ 2 «*/2>

2
- /Q

2
-2<*p +2/6 -1)

^7 i =
- ?(8 1

2*/S -3« 2
(3

Z
+ 6 °</3

2
-3 g

2
-4 */3 +4 g -1 ) (11-16)

*>/* 2/3(8^V/^ -* 2 2
+2 */3

2
- /3

2
-2 V/3 +2/9 -1)

where: [3 (8f
2
o({S -« 2

/$
2
+ 2V/J

2
-/3

2
-2 <*y$ +2^ -1) ^

d. Interpretation of the Curves

Inspection of the parameter plane for the zeros of the

transfer function shows that it is possible to place a pair of complex con-

jugate zeros anywhere in the s-plane by appropriately choosing the para-

meter values ca^
, ^ and the frequency normalizing factor RC.
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Fig. 14 RC Lattice Network with Variable Parameters
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Fig. 1§ Poles of the Variable Parameter Lattice Network
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Fig.|6 Zeros of the Variable Parameter Lattice Network
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12. Application of the Method to other Problems

This section contains examples of several networks whose transfer

functions are examined to determine the applicability of parameter plane

methods.

a. Pi Network

The pi network shown in Figure 17 is useful for matching a

resistive source to a resistive load at a fixed frequency. The source and

load resistances are chosen as variable.

-vWAA/V-

E- ©

-nrrrmr-

±zC _ c. R^fi

Fig. 17 Pi Network with Variable Source and Load Resistances

The transfer function of this network is given by:

E.(s) */S C
1
C
2
s
3
+ (tfC^L +(9C

2
L)s

2
+ ( o(fl c +

*fi
C
2
+ L)s +(©(+(6)

(12-1)

Equation (12-1) shows that the parameters appear in the coefficients in a

manner that permits a parameter plane to be constructed which will show

how the network poles are determined by the values of the variable para-

meters.

b. Unsymmetrical Parallel-T Network with Variable Parameters

The network shown in Figure 18 is of particular interest here
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because of the way that the parameters appear in the coefficients of the

transfer function.

p RCs

Fig. 18 Unsymmetrical Parallel-T Network with Variable Parameters

The transfer function of this network is given by:

E (s)
o

E.(s)

d(3 p + ( <x g + g Z
)p

Z+(*£ Z+ & Z
)p + */3 (12-2)

of(S p
3

+( °</8
?
-\-/3

2
+o<(S+*+|S)p

2
+( x(3

7
\- /3

2
+ *<p+°( + p)p + 1

First inspection of (12-2) indicates that the (& terms will complicate the

application of parameter plane techniques. The following is noted however:

(1) The network is passive RC, therefore the poles are all real and lie on

the negative real axis in the p-plane. Hence p = ff~ may be substituted into

the denominator of (12-2). This denominator is then equated to zero and

the resulting equation solved by the quadratic formula for ^ as a function

of «s( and 0"*
. Thus the parameter plane for the poles may be constructed.

(2) The quantity (3 may be factored from the numerator of (12-2). The

resulting polynomial is of the proper form to be analyzed by parameter plane

methods.
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c. Bridged-T Network with Variable Parameters

The bridged-t network shown in Figure 19 can be used to gener-

ate complex conjugate zeros in the left half s-plane.

JWW\AA/

E.

O
*C

O-

-o

o

Fig. 19 Bridged-T Network with Variable Parameters

The transfer function of this network is:

E
o
(p) = cx'/S s

2
t (*+ l)s + 1

2E.(p)
(12-3)

<*<f3
s + (<*+/&+ l)s + 1

where p RCs

The form of Equation (12-3) readily permits parameter plane analysis and

design.

d. Bridged Twin-T Network with Variable Parameters

The network shown in Figure 20 is an RC Bridged Twin-T

Network with variable bridging and shunting elements.

t

o- -vvWV^
C

Sr:

-o

±Yc

O -o

Fig. 20 Bridged Twin-T Network with Variable Parameters
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The transfer function of this network is given by (12-4):

Eo<P> - (12-4)

B
±
(p)

(a<prS)pi4-(2d/3?<S+2/S>}rcf+Z«pS-h<x/$? -^(S)f^i-

(*/3 -t-2/Q -h2<f +2)P+/

Where p RCs

Inspection of (12-4) reveals that one may construct several parameter planes

depending on which pair of the quantities a/ , A , y
1

, q , are considered

variable and which pair are considered fixed. The following possibilities

are available:

Variable Parameters Fixed Parameters

<* >fi
t ,<r

o< ,r
£ ,s
o( >s
p ,Y

t ,6
<* • /§
/9 ,/
o< ,r

,*
<* ,<r

e. Capacitive Divider Matching Network

The network shown in Figure 21 is frequently used for

frequency selective coupling between high output resistance and low input

resistance amplifier stages.

Fig. 21 Capacitive Divider Matching Network
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The transfer function of this network is:

V s
> = w Ls (12-5)

E
i
(s) </SyVL 2)sS-(|&*V^

2
+8, L

2
)s

3
+<of/9Jf L-L

2* + £/ Lf /eVL)s
2
+

( <*/ L+ Bifid" + ^/SV + L) s 4- o<

Equation (12-5) shows that it is possible to construct parameter planes

with the capacitances V and o variable and the source and load resistances

o^ and |S fixed or vice versa.

f . Two Section Resistively Loaded LC Low Pass Filter

The LC low pass filter shown in Figure 22 has variable

source and load resistances.

Fig. 22 Two Section Resistively Loaded LC Low Pass Filter

The transfer function of this network is:

E.(s) m

ITCsT
(/6L

1
L
2
C
1
C
2
)s

4
+ (c*(8 C

1
C
2
L
2
+L

1
L
2
C
1
)8 +

(12-6)

(jBL C^jBL^ (g,
L
2
C
2
)s

2
+ ( «p C^^C^+L^s +

(<*+£)

The form of this function permits application of parameter plane techniques.
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g. Butterworth Filter Pole Sensitivity to Coefficient Variations

Parameter plane techniques can be used to investigate the

effects upon pole locations of Butterworth Filters due to variations in the

coefficients of the transfer function caused by component tolerances, aging,

etc. As an example, consider the transfer function of a normalized 4th

order Butterworth filter:

E
o (p) =

J (12-7)
E
i
(p)

p
4
+ 2.613p

3
+ 3.414p

2
+ 2.613p + 1

Assume that the last two coefficients in the denominator of (12-7) are

variable. Denote these variable coefficients as of and /S and equate the

denominator of (12-7) to zero. This results in the polynomial equation:

p
4
+ 2.613p

3
+ 3.414p

2
+ ^ p + /S =0 (12-8)

The parameter plane for this polynomial is displayed in Figure 23. When

o( = 2.613 and /3 1.0 as is the normal case, the poles of (12-7) are

equally spaced on the unit semicircle in the left half p-plane. By enter-

ing Figure 23 with values of & and /3 , the resulting poles of (12-7)

may be read directly.
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13. Algebraic Design of Electric Networks by Parameter Plane Techniques

a. Introduction

Parameter values which will guarantee that certain poles and zeros

of a rational network function appear at desired s-plane locations and at

the same time guarantee that other specifications are met may be algebraical-

ly determined by employing parameter plane techniques. This may be accomplish-

ed without the necessity of drawing parameter plane curves and thus, more

than two adjustable parameters may be simultaneously considered. In general

it is necessary to have at least n adjustable parameters in order to make n

specifications. While the design technique does not mathematically demand

it, some preliminary investigation is desirable to determine whether or not

a physically realizable set of parameter values is likely to be found which

will meet the specifications. If such an investigation is not performed

then it may be the case that the design technique will generate only sets

of parameter values which are unrealizable.

b. Types of Specifications Which May be Used

Any specification on the network function or on the network be-

havior which can be expressed as an algebraic equation in the adjustable

parameters can be used in conjunction with this technique of design. These

specifications can include both pole-zero locations and performance specifi-

cations. Some of these are:

(a) Pole-zero locations. The parameter plane equations of Section

4 can be used to specify desired pole-zero locations.

(b) Zeta of a pair of complex roots may be specified without

specifying the corresponding omega, or vice versa, by using the non-para-

metric equations of the constant zeta and omega loci presented in Section

5.
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(c) Bandwidth. The equations of the constant bandwidth curves

developed in Section 6 can be used to specify bandwidth.

(d) Q. The equations of the constant Q loci, Section 7, may

be used to specify Q for second order systems.

(e) Maxima and minima in the frequency response can be specified

by equating the derivative of the magnitude function to zero at the fre-

quency where the maximum or minimum is desired.

(f) Infinite frequency or DC gain of a network may be specified

by expressing these quantities as algebraic equations in the adjustable

parameters.

c. The Technique of Algebraic Design

(1) Pole Specifications

Consider either the numerator or denominator of a rational

network function written as the polynomial equation:

y< a
k
s
k

= (13-1)

k=0

where the coefficients a are functions of the adjustable parameters q :

\ = f
k

( q
i'

q2"* ,,q
i
) (13_2)

Parameter plane theory provides a number of algebraic equations which

relate the root factors f ,
f->

, » to the parameter values q.. These are:

(a) The basic parameter plane equations for real and

complex roots:

1. For real roots:

y- a
k

<r
k

= (13-3)

k=0

2. For complex roots:

•£ (-l)\ii)\.
J
< f ) - (13-4)
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where j is any integer.

(b) The constant zeta and omega loci in non-parametric form

as developed in Section 5:

Z(a
k , f ) - (13-5)

W(a
k

, CO ) = (13-6)

(2) Other Specifications

Consider the rational network function (13-7) which may be

the transfer function of some network:

m k

H v
F(s)=

k=°

(13-7)

u kV
k=0

where the coefficients a, and b are different functions of the adjustable

parameters q.

:

a
k

= f
k (V q2'** , ' q

i*
(!3-8)

b
k

= Sk^i'
c
»2 , **- q

i
) (13 " 9)

Specifications on the behavior of F(s) must be written as algebraic equations

in the parameters q. in order to apply this design technique. This is

straightforward for the common types of specifications. Sections 6 and 7

show how this is accomplished for specifications of Q and bandwidth.

(3) Solution for the Parameter Values which Meet Specifications

If r poles and zeros of the network function are specified,

then Equations (13-3) through (13-6) may be employed as necessary to gener-

ate r independent equations in the adjustable parameters q.. These r equa-

tions taken together with perhaps s other equations arising from other
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specifications form a set of (s+r) equations which must simultaneously be

satisfied. It is presumed that the number of adjustable parameters q.

is equal to or exceeds the number (s+r) of specifications. In order to

obtain discrete solutions for the parameter values, the number of specifi-

cations must be made equal to the number of adjustable parameters. This

may be achieved by fixing as many of the adjustable parameters as required

to obtain this equality. Once the number of adjustable parameters equals

the number (s+r) of specifications, the set of (s+r) algebraic equations

may be simultaneously solved. Simple cases may be solved by hand, however

the equations are generally complicated and require computer solution.

Several iterative procedures are available to achieve this, and are usual-

ly some type of search routine which seeks parameter values which will force

all equations to zero simultaneously.

In general the set of (s+r) equations is non-linear and its solution

will result in several sets of parameter values which mathematically satisfy

all equations simultaneously. Some of these solutions will be rejected be-

cause they are unrealizable. It should be kept in mind that the mathemati-

cal solution may not always be physically acceptable even though realizable.

This situation may occur, for example, when specifying a maximum in the

frequency response characteristic by selecting parameter values which will

cause the derivative of the magnitude function to be zero at some specified

frequency. The mathematics may indicate a solution which results in a

minimum rather than the desired maximum. In any event solutions should be

checked to ensure that they meet all of the specifications. If a solution

exists which is both realizable and physically meets the specifications,

then it will be found among the solutions to the (s+r) equations.
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d. Example

Consider the case of the symmetrical parallel tee network

which was investigated in Section 9. The zeros of the transfer function of

this network are given by the roots of:

^p3 +2^p 2 +2|ip+l =

Since this equation has two variable parameters, two of its three roots may

be specified. A preliminary analysis has indicated that complex roots are

possible with real and positive parameter values. Assume that the para-

meter values are desired which will cause a pair of complex roots to have

reta equal to 0.2 and omega equal to 1.0. The basic parameter plane equa-

tions for complex roots are chosen with j = and j 1. These become:

0.84 o(/3 -1.2 (3 =0

1.2 (3 = 0.84

Solution of these equations produce the desired parameter values:

^ = 1.44

|6 = 0.70

By dividing the quadratic factor associated with the specified complex roots

into the cubic equation (13-10), the real root is determined to be located

at p = -1.

e. Example

Consider again the parallel-tee network of the previous example,

Instead of completely specifying the complex zeros, let only the omega be

specified, and instead of specifying zeta let the value of the real root be

specified. Assume that the omega of the complex zeros is specified as 1.2

and that the real zero is to occur at s -0.5. In order to obtain the
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desired parameter values which will result in these roots, the equations of

the real roots and the constant omega loci are employed:

k=0

W(a
k

, O)) =

From Section 9, and with CO = 1.2 and 0* = -0.5, these equations are:

-0.125 */6 + 0.50/6 - 1.0/6 + 1.0 = (13-11)

2.99 * 2
fi

2
- 4.14 «fl

2
+ 2.88/3 - 1.0 - (13-12)

Equation (13-11) is solved for of as a function of /3 :

<* " 0.50 /9 - 1.0 (13-13)

-0.125/3

Equation (13-13) is substituted into Equation (13-12) to form the quadratic

in (3 :

64.33/3
2

-221.34 /€> + 190.10 = (13-14)

Equation (13-14) is solved for two values of f? and then Equation (13-13)

is used to obtain the corresponding values of °( . The results are:

tt</

1
= 0.85 = 1.65

0/ = 0.46 /9
2

= 1.79

Upon checking of these results o( and /5 are found to produce the desired

zeros. °( and (3 are rejected since they produce three real zeros, one

of which has the desired sigma, rather than one real root and a pair of com-

plex conjugate roots as desired. This situation was anticipated as discuss-

ed in the introduction to this section.
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f . Example

In the previous two examples only zeros of the transfer func-

tion were specified. In this example a pole is specified and a constraint

is placed on the zeros. The symmetrical parallel tee network discussed in

Section 9 is used as a vehicle. The transfer function of this network is:

E (P) . <W ± 2 fl p
2
+ 2 g p + 1

(13 _ 15)

E Cp) o//Sp
3
+ (2/i+2^/3+<y )p

2
(2 (3 + W + 2)p+l

where p RCs

Assume that a pole is required to be placed at p = -0.30 and that a pair of

complex conjugate zeros is to have a damping ratio n - 0.4999. The equa-

tion of the constant zeta loci for the numerator polynomial which was obtain-

ed in Section 9 is used to express the constraint on zeta:

((8.00 * -16.00) /Q +8.00) /S =0 (13-16)

The equation for the constant sigma curves for the denominator polynomial,

also obtained in Section 9, is used to express the constraint on the pole:

0.153^/9 -0.420/3 -0.050* +0.400 = (13-17)

Equation (13.-1-6) is solved for »/ as a function of g :

ot = 2.00 - (1.00//3 ) (13-18)

When Equation (13-18) is substituted into Equation (13-17) the following

quadratic results:

(3
2

+ 1.52/S - 1.84 = (13-19)

Equations (13-18) and (13-19) give the following pair of parameter values

which mathematically satisfy the constraints placed on the pole and zeros

of the transfer function:

o<
1

= 0.74 ($
1

= 0.80

of
2

= 2.43
fi 2

= -2.31
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Upon checking, o< . and A are found to satisfy the specified constraints.

0( and /3 are rejected as unrealizable since /S is negative,

g. Example

Consider the loaded and null-adjusted symmetrical parallel

tee network discussed. Presume that one wishes to select a value of the

source resistance ©< , and the load resistance /3 , which will cause a

pole to be located at p = 0" -0.3 and which will result in a value of

Q :r0.34. Referring to Section 10, Equation (10-2), it is seen that the

specification on the real pole requires that:

-0.84W/9 -0.11* -0.11/8 + 1.40 = (13-20)

Equation (10-10) of the same section gives the equation which must be satis-

fied to meet the specification on Q:

1.8496 * 2
(&
2

- 0.3008 <*/3
2
+ 0.8496 /S

2
- 0.3008 * 2

/3> - 4.4512 <*/8 -

0.1504p + 0.8496*<
2

- 0.1504^ + 0.4624 = (13-21)

Equations (13-20) and (13-21), when simultaneously solved by digital computer

produce the solution:

* = 1.95

(3 = 0.677

These values are physically realizable and meet the specifications,

h. Conclusions

The parameter plane technique presented in this section is

the only design technique known to the author which allows parameter values

to be determined which will cause both pole-zero and performance specifica-

tions to be simultaneously satisfied. The types of specifications which

may be made are limited only by the requirement that they be expressible as

algebraic equations in the adjustable parameters. For common specifica-

tions this is readily achieved.
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14. Conclusions and Recommendations for Further Work

a. Form of the Coefficients

The work which has been presented in Section 4 shows how parameter

plane equations have been developed for polynomials with coefficients of

the form:

•k-V + \<* + VI8 +f
k < 14 - 1)

This extension of the theory permits a wide class of network functions to

be analyzed. There remains, however, cases where higher order terms in

2 2 2
and appear in the coefficients. These include terms like: ex /3 , <* (3 ,

2
<*/3 , etc. Work currently being performed by Lt. A. R. Miller, USN at

the U. S. Naval Postgraduate School has shown that it is possible to solve

the parameter plane equations for coefficients of the form:

\ = \ al
2
+ ckP

2
+ \«P + V + f

k P +
*k < 14 - 2)

Preliminary work done by Lt. R. E. Hudson, USN, also at the U. S. Naval

Postgraduate School, has shown that it is theoretically possible to solve

the parameter plane equations for coefficients of the form:

% - V<
2

(3

2
+ c

k
«

2 ^ «fi
2
+ e

k =<
2
+ £

k/
3
2
+ K«fl

+ h
k* + q

k|3
+ t

k

(14-3)

There remains however much to be done, particularily in interpreting the

curves which result from solution of the parameter plane equations associated

with (14-2) and (14-3).

It is, of course, desirable to allow even higher order combinations of

o( and /9 to appear in the polynomial coefficients than allowed by (14-3).

At the current state of development it is not clear just how to achieve this.

89





b. Non-parametric Equations of the Constant Zeta and Omega Loci

The derivation of the non-parametric equations of the constant

zeta and omega loci presented in Section 5 permits these loci to be more

readily constructed than was previously possible. More important, however,

it forms the bridge between parameter plane theory and the theory of plane

algebraic curves. To date this relationship has not been seriously investi-

gated. It is the author's opinion that such investigation will lead to new

and valuable information about the behavior of the loci. Such information

may well lead to the development of sketching techniques which would con-

siderably simplify the construction of the loci. Additionally it might

permit new insight into the behavior of the zeta equals zero locus which is

the stability limit for the poles of active networks.

c. Constant Bandwidth Curves

Simultaneous correlation between frequency response character-

istics and root locations upon the parameter plane is now possible as a

result of the development of the constant bandwidth curves which were develop-

ed in Section 6. Families of such curves permit the frequency response of a

network to be sketched for any choice of parameter values within the range

for which the curves are drawn.

The equations developed in Section 6 apply to coefficients in the trans-

fer function of the form (14-1). When parameter plane techniques are

developed for coefficients of the form (14-3) it will be necessary to extend

the work of Section 6 to include this coefficient form. Preliminary work

done by the author has shown that this is possible by following the same

procedure as employed in Section 6.
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d. Constant Q Loci

As defined by Morris (4), Q is a mathematical parameter of a

second order characteristic equation. Thus defined, Q may be employed to

characterize RC networks for which the conventional definitions fail to

provide useable correlation between the network characteristics and the

value of Q.

Loci of constant Q, developed in Section 7, permit the value of Q

associated with any choice of network parameters to be read directly from

the parameter plane. Alternately one may select parameter values from the

parameter plane which will achieve a desired value of Q within the capabili-

ties of the network.

e. Algebraic Design by Parameter Plane Methods

The algebraic design techniques presented in Section 13 per-

mit m network parameter values to be determined which will guarantee that ra

specifications upon the network are met. These specifications can be either

pole-zero locations or other specifications which can be written as algebraic

equations in the m adjustable parameters, or both. As pointed out in

Section 13, it is necessary to have the same number of adjustable parameters

as specifications in order to obtain discrete sets of parameter values as

solutions to the problem. Unless these specifications are realistic ones

in terms of the network capabilities, then it may be the case that no

physically realizable solutions will be produced by the design technique.

It is more likely that a realizable solution would be found if the system

had more adjustable parameters than specifications and if the specifications

were stated as inequalities rather than strict equalities. For example, one

might specify Q greater than 0.34 rather than strictly equal to 0.34 provid-

ing that this is acceptable. This procedure would lead to a set of equations
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which would contain some strict equalities and other inequalities and hence

other methods than those of Section 13 would have to be applied in order to

obtain parameter values which would meet the specifications. The author

suggests that non-linear programming techniques be investigated in connec-

tion with the solution of such a set of equations,

f . Summary

The basic parameter plane techniques, and the extensions to

them presented here, provide a powerful tool for the analysis and design of

variable parameter, active and passive, electric networks. These techniques

are capable of providing information about the poles and zeros and sensitivity

of variable parameter networks which is not possible by any other method

currently known. It is, for two parameter problems, all and more that

Evan's root locus technique is for single parameter problems. Like the

root locus technique it is applicable to a much wider sphere of problems

than that of electric networks. Subject to the restrictions on the form of

the coefficients previously discussed, parameter plane techniques may be

used to investigate the singularities of any variable coefficient rational

function in the complex variable s.
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APPENDIX I

Inductive proof that:

v j > u j_i< ? > - u
i.i< ? >v r > - -u

i_j< ? > (i-D

for all integers i and j.

The inductive proof that (1-1) is true consists of the following steps:

1. Show that (1-1) is true for i = 2 and i = 3.

2. Assume that (1-1) is true for i = m-1 and i = m.

3. Show that (1-1) is true for i m + 1, given that it is true

for i m-1 and i = m-2.

Step la:

i = 2

U
2
( ^ )U

j-l ( ? > " U
l
( ? )U

j
( T }

= "U
2-j ( f } (I_2)

but

V ? >
" 2 7

VP" 1

Therefore (1-2) may be written:

z JT »j_i< y > - "j(f > -Vj ( ;P (i - 3)

but u.
k ( ; > - -v ?

)

Hence (1-3) becomes:

*f"J.i<f>-V^ > "Vic ? ) (I "4)

(1-4) is recognized as the recursion relation which defines the

Chebyshev functions. Thus (1-2) is true for all j.

Step lb:

i = 3

Vf>Vi ( T ) -VWP--WP (x'5)
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but:

U
3

( f ) = 4
Jf

2
-l

Therefore (1-5) may be written:

(45
2
-l)U._

1 (^ ) - 2^U.(^ ) = U._
3

( f ) (1-6)

Making use of the recursion relation for the Chebyshev functions, (1-4),

it is possible to write (1-6);

(4J-
2
-l)U..

l( ^) -4^ 2
U._

1(5) + 2
?
-U..

2
(p=U._

3(5) (1-7)

Expanding (1-7) and cancelling where possible^ produces the recursion relation

for the Chebyshev functions, (1-4).

Therefore (1-5) is true.

Step 2:

Assume that the following equations are ture:

W*>Vi<?> -V 2<?> V?> =
- u
n,-j-i<f >

(I "8 >

v ? >
u
j-i ( ? > - vi< f >v f > -w r > «-»

Step 3:w f > v J+i
( y > (i - io)

Applying the recursion relation for the Chebyshev functions, (1-4), to the

left hand side of (1-10) and rewriting, one obtains:

Substituting (1-8) and (1-9) into (1-11) one obtains:

2 ? [Um<P U
j -l<f

)
-Um-l<?)U j <f )] - [Vl<5'> U

j -l<?>-
Um-2<r> U

j
( ?>]

S

~U
m-j+l(J)' (1-12)

Equation (1-12) may be written:
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(1-13)

By use of the recursion relation for the Chebyshev functions, (1-4), Equa-

tion (1-13) may be written:

WfWj-t*^ " "«<?>V?>
= "W^* (I " 14)

Thus (1-1) is true for i = m+1, given that it is true for i ra-1 and i =

m-2. This concludes the proof that (1-1) is true for all i and j integer.
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APPENDIX II

Proof that:

k=0

£ (-l)
k
a
k
«O
k
U
k_.(f ) = (II-l)

for all integers j and k

Theorem ;

n . .

If: Yi <-D a. iu\< 5" >
- ° (n - 2 >

k=0
K k r

and if:

k=0

Then:

y (-1) a ki U, .( X ) for all integers

k=0
j and k (II -4)

Proo f:

Subtract (II-2) multiplied by U .

1
( / ) from (II-3) multiplied by

U.( X ). This gives:

I i-»\** Wj-i**' - V-x«5*"j<3T> 1 - ° (II " 5)

k=0

Employing the results obtained in Appendix I, namely (1-1), Equation (II-5)

may be written:

^ (-l)\co
k

[-U
k_j<£>]

=0 (H-6)

k=0

Multiplying (II-6) by -1 concludes the proof of (II-4).
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APPENDIX III

Table of the Chebyshev Functions

The Chebyshev Functions T, ( X ) and U, ( X ) are defined by the following

recursion relations:

V ? ) - i

W 7 > -W 5 >
+ Vi< ? >

°

V J >
°

»i<5 >

»

The first few of these functions are tabulated below:10
? X

1

*

.,«-!

4^-35

8 Jf

4
-8 J

2
+l

2 2X -1 2

3 4 ?"- 3 ? 4
J

2
"1

4 8* 4
-8j

2
+l 8^

3
-4

5
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